Drosophila Finishing Problem Set
Students can practice using Consed by working on two Drosophila projects. This exercise poses various challenges that students may encounter when working on their own projects.
Students can practice using Consed by working on two Drosophila projects. This exercise poses various challenges that students may encounter when working on their own projects.
This is a series of three 3-hour exercises that guide students on the DNA Subway, an online workspace that integrates tools for genomic analysis in a student and educator-friendly environment. Exercise 1 was developed by Dr. Judy Brusslan (California State University, Long Beach). The Exercise I and II PowerPoints and Exercise II were developed by Dr. James Youngblom (California State University Stanislaus). The “Prospecting for Green Revolution Genes” presentation and Exercise III were developed by Dr. Nicholas Ewing (California State University, Sacramento) based on materials initially developed by members of the iPlant Collaborative.
This exercise was developed by Dr. Anya Goodman (California Polytechnic State University) and Dr. James Youngblom (California State University, Stanislaus). This exercise engages students in annotating genomic DNA from less famous species of Drosophila while teaching basic bioinformatics skills.
Dr. Justin R. DiAngelo (Penn State Berks) has developed an exercise that takes students through a series of steps to annotate a gene in a Drosophila biarmipes contig. Students will construct a gene model using gene predictions, BLASTX searches, and the GEP UCSC Genome Browser mirror. Students will then verify their final gene model using the Gene Model Checker.
Dr. Marian Kaehler (Luther College), in collaboration with Jacob Jibb, has written an annotation lab. This lab will ask students to annotate a gene from the D. erecta genome.
Dr. Robert Moss (Wofford College) has developed an annotation exercise on Influenza viruses.
An introductory exercise using BLAST to annotate a region in the Drosophila melanogaster genome. Students can use this exercise to gain familiarity with performing BLAST searches and interpreting BLAST output. An answer key is provided for instructors.