This module explores how multiple different mRNAs and polypeptides can be encoded by the same gene. After completing this module students will be able to explain how alternative splicing of a gene can lead to different mRNAs and illustrate how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
In this module students will learn how mRNA is translated into a string of amino acids. After completing this module students will be able to determine the codons for specific amino acids as well as start and stop codons. They will be able to identify open reading frames for a given gene, define the phases of splice donor and acceptor sites and describe how they impact the maintenance of the open reading frame.
This module uses mRNA data to identify splice sites. After completing this module students will be able to identify intron-exon boundaries using canonical splice donor and acceptor sequences and determine which are best supported by RNA-Seq and TopHat splice junction predictions.
This module demonstrates how the transcript generated by RNA polymerase II (the pre-mRNA) is processed to become mature mRNA using the sequence signals identified in Module 2. After completing this module students will be able to use the genome browser to explain the relationships among pre-mRNA, 5′ capping, 3′ polyadenylation, splicing, and mRNA.
This module illustrates how a primary transcript (pre-mRNA) is synthesized using a DNA molecule as the template. After completing this module students will be able to explain the importance of the 5′ and 3′ regions of the gene for initiation and termination of transcription by RNA polymerase II, and identify the beginning and end of a transcript using the capabilities of the genome browser (RNA-Seq, Short Match).