UCSC Genome Browser

Pathways Project: Annotation Walkthrough

The Pathways Project is focused on annotating genes found in well characterized signaling and metabolic pathways across the Drosophila genus. This walkthrough illustrates how to apply the GEP annotation strategy for the Pathways Project to construct a gene model for the Ras homolog enriched in brain (Rheb) gene in Drosophila yakuba.

Gene Annotation using GEP Tools

Dr. Julie Emerson (Amherst College) has developed a simple introduction to the GEP annotation project for the 2012 ABLE conference. This set of documents provides an overview of the GEP’s scientific and educational goals and then goes through examples of how GEP materials are being utilized at multiple colleges and universities, focusing on gene annotation in an introductory biology course at Amherst College.

Finding Genes in a New Fly Genome

This exercise was developed by Dr. Anya Goodman (California Polytechnic State University) and Dr. James Youngblom (California State University, Stanislaus). This exercise engages students in annotating genomic DNA from less famous species of Drosophila while teaching basic bioinformatics skills.

A Simple Annotation Exercise

Dr. Justin R. DiAngelo (Penn State Berks) has developed an exercise that takes students through a series of steps to annotate a gene in a Drosophila biarmipes contig. Students will construct a gene model using gene predictions, BLASTX searches, and the GEP UCSC Genome Browser mirror. Students will then verify their final gene model using the Gene Model Checker.

Genomic Annotation Lab Exercise

Dr. Marian Kaehler (Luther College), in collaboration with Jacob Jibb, has written an annotation lab. This lab will ask students to annotate a gene from the D. erecta genome.

Introduction to the Complete GEP Gene Annotation Process

Developed by Dr. Ken Saville (Albion College) and Dr. Gerard McNeil (York College, City University of New York), this walkthrough provides a comprehensive overview of the entire GEP gene annotation process. This walkthrough includes a brief description of the research problem and step-by-step instructions on how to use the UCSC Genome Browser, FlyBase, the Gene Record Finder and NCBI BLAST to investigate a feature in a Drosophila erecta Muller F element annotation project. The walkthrough then shows how students can use the Gene Model Checker to verify a gene model; it also includes a sample GEP Annotation Report.

Module TSS4: Annotation of Broad Transcription Start Sites

This module illustrates the use of computational (e.g., blastn) and experimental (e.g., RAMPAGE, CAGE, RNA PolII ChIP-Seq) data to define the narrow and wide TSS search regions for genes with broad promoters.

Module TSS3: CAGE, RAMPAGE, and RNA Pol II X-ChIP-Seq

This module uses the placement of the Initiator (Inr) motif, TSS annotations produced by the Celniker group at modENCODE, and experimental data such as CAGE, RAMPAGE, and RNA Polymerase II X-ChIP-Seq data to characterize the promoter for the Antp gene in D. melanogaster.

Module TSS2: Using Sequence Alignment to Identify a TSS

This module illustrates how pairwise (blastn) and multiple sequence alignments can be used in conjunction with RNA-Seq data and the Short Match functionality of the UCSC Genome Browser to facilitate the TSS annotation of the Antp gene in D. eugracilis.

Module TSS1: Transcription Start Sites Introduction

This module describes how Celniker TSS annotations, DNase I hypersensitive sites, and the 9-state chromatin models can be used in the classification of promoter shape for the Antp gene.